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1 Introduction

This document is the primary reference for the Minispec hardware description language. It describes the syntax and semantics of

the language in detail, and illustrates their use.

This reference is not intended as a first introduction to Minispec, and assumes some familiarity with the language. We recommend

the Minispec tutorials as an introduction to the language.

How to use this reference: This reference does not assume you will be reading it sequentially. Use it to answer specific

questions or to improve your knowledge of particular aspects of Minispec.

Each section presents a particular aspect of the language, with sections roughly laid out bottom-up: the first sections present the

basic elements of the language (tokens, types, expressions, etc.), while the latter sections present the more complex elements

(functions, modules, etc.), which build on the simpler ones.

Each section presents code examples in gray insets . In syntax descriptions, items enclosed in [ red brackets ] are optional.

Acknowledgments: Minispec is very closely related to Bluespec SystemVerilog (BSV): it shares much of its syntax with BSV

and the Minispec compiler internally translates Minispec to BSV. Minispec simply would not exist without BSV. Nonetheless,

using Minispec requires no knowledge of BSV, and so this reference is self-contained: it presents Minispec on its own, without

any further reference to BSV. Minispec from BSV recounts the differences between both languages.

In writing this reference, we took inspiration from the excellent language references of BSV, Rust, and Python.

2 Lexical Structure

This section describes the types of tokens or lexemes in Minispec, i.e., its most basic syntax elements.

2.1 Whitespace and comments

Spaces, tabs, and newlines all constitute whitespace. Minispec is a free-form language: whitespace serves only to separate tokens

and has no other significance.

// Example one-line comment

/* You can write comments

across multiple lines */

Comments are treated as whitespace, and can either be one-line comments starting

with //, or multiline comments delimited by /* and */. Comments do not nest.

2.2 Identifiers and capitalization

// Uppercase identifiers

Bool

FooType

// Lowercase identifiers

fooVar

barFunction

// Dollar-sign identifiers

$display

$finish

Identifiers, also called names, are non-empty strings where:

• The first character is a lowercase letter, an uppercase letter, or a dollar sign ($).

• The remaining characters are alphanumeric or underscore (_).

Capitalization is important in Minispec. Identifiers for type names, module names,

and enum labels must begin with an uppercase letter. Every other identifier (i.e.,

those for variables, function names, method names, rule names, input names, and

instance names) must begin with a lowercase letter.

Identifiers whose first character is $ are reserved for system functions (see Section 12).

2.3 Keywords

The following words are reserved Minispec keywords, and cannot be used as normal identifiers:

type function method input begin for let

typedef endfunction endmethod default end return

struct module rule case if import

enum endmodule endrule endcase else bsvimport
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In addition, because Minispec compiles to BSV and Verilog, the Minispec compiler currently forbids using keywords from these

languages as identifiers. The compiler will produce an error if any of these keywords is used.

2.4 Number literals

// Sized number literals

// 4-bit decimal value 10

4’d10 // in decimal

4’b1010 // in binary

4’ha // in hex

4’hA // hex digits are

// case-insensitive

// 8-bit decimal value 10

8’b00001010

8’b1010

8’h0a

// Unsized number literals

’d10 // decimal 10

10 // also decimal 10

’b1010

’habcdef

// _ can separate digits

16’b1010_0110_1101_0010

Number literals encode numeric values. They can be sized or unsized. Sized literals

encode their bit-width, i.e., the number of bits they take. By contrast, unsized literals

have no explicit bit-width. Literals can be specified in decimal, hexadecimal, and

binary bases.

A sized number literal always consists of three elements:

1. Bit-width, written as a decimal number.

2. Base: ’d for decimal, ’h for hexadecimal, and ’b for binary.

3. Value, written using digits in the specified base (0–9 for decimal, 0–9 and a–f for

hex, and 0 or 1 for binary).

An unsized number literal has no bit-width, and consists of an optional base and

value. If the base is not given, the value is interpreted as decimal.

To make long values more readable, number literals allow using underscore characters

(_) to separate value digits.

Sized and unsized literals can both be used in expressions involving Bit#(n) vari-

ables. The examples below illustrate their pros and cons. Sized literals enforce their

bit-width, and will cause a compile-time error on a width mismatch. By contrast,

unsized literals have their bit-width deduced by the compiler. This makes code more

succinct and can help express long values, but the compiler won’t catch mistakes that

stem from wrong assumptions about bit-widths.

Bit#(4) x = 4’d10; // OK, as both x and the literal are 4 bits

Bit#(5) y = 4’d10; // Error due to mismatched bit-widths, y is 5 bits

Bit#(4) z = 10; // OK, 10 inferred to be 4 bits

Bit#(4) w = 1000; // Error, decimal 1000 inferred to be 4 bits but doesn’t fit in 4 bits

Unsized literals must be used in expressions involving Integer variables, as Integer is an unsized, compile-time-only type

(see Section 6.3).

2.5 String literals

"This is a string"

"String with a\nline break"
String literals are enclosed in double quotes ("...") and must be written on a single

line. String literals admit special characters using the following escape sequences:

Character newline tab backslash double quote

Escape sequence \n \t \\ \"

2.6 Bool and Maybe literals

True and False are literals of type Bool (Section 6.1). Invalid and Valid are literals of type Maybe (Section 6.5). Like

keywords, these literals cannot be used as normal identifiers.

2.7 Don’t-care values

A question mark (?) denotes a special don’t-care value. Don’t-care values can be assigned to variables of any type and can be

used in place of literals. They help the compiler produce better circuits (see Section 8.1 for examples).

3 Overview of Types

Minispec is a strongly typed language with static type checking: every variable and expression has a type, and that type must be

known statically, i.e., at compile time. Variables must be assigned values with compatible types.
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Built-in types: Minispec provides five basic, built-in types:

• Bool represents a Boolean value, which can be either True or False.

• Bit#(n) represents an n-bit value.

• Vector#(n, T) represents a collection of n values of type T.

• Maybe#(T) represents an optional value of type T.

• Integer represents an integer value with an unbounded number of bits.

Section 6 describes and illustrates the use of these types in detail. All types except Integer are ultimately represented as a

collection of bits in hardware, and can be converted to and from Bit#(n) (Section 6.2). Integer is special: it cannot be

synthesized into hardware and can only be used at compile time.

User-defined types: Minispec supports three kinds of user-defined types:

• Type synonyms allow giving a different name to a type.

• Structs represent collections of values.

• Enumerations or enums allow defining a set of unique symbolic constants, also called labels.

Section 7 describes user-defined types in detail.

// A 16-bit value

Bit#(16) halfWord;

// A Vector of 8 Bools

Vector#(8, Bool) boolVec;

// A Vector of 16 Bit#(32)s

Vector#(16,Bit#(32)) wordVec;

Parametric types: Types of the form Type#(ρ1,...,ρn) are called parametric

types (also known as polymorphic types or generics in other languages). Parametric

types take one or more parameters (ρi), which can be either Integer values or other

types. These parameters must be known at compile time, and make the type concrete.

Several of the built-in types are parametric, as shown in the examples.

Beyond parametric types, Minispec also supports parametric functions, modules,

structs, and type synonyms using a consistent syntax and semantics, which Section 10

describes in detail.

Type conversions are explicit, except for Integers: Unlike in some languages, in Minispec almost all conversions between

values of different types are explicit. For example, it is illegal to assign a Bool value to a Bit#(1) variable (or vice versa), even

though both take one bit to represent. Similarly, it is illegal to assign Bit#(4) value to a Bit#(8) variable, because they have a

different number of bits and implicit bit-width extensions never happen. This makes code more verbose but reduces mistakes.

Bool b = True;

Bit#(1) x = b; // Error, cannot convert from Bool to Bit#(1)

Bit#(1) y = b? 1 : 0; // OK, uses ternary operator to convert explicitly

Bit#(4) i = 12;

Bit#(8) j = i; // Error, mismatched bit-widths 4 and 8

Bit#(8) k = {0, i}; // OK, uses concatenation to zero-extend i

Integer n = 3 * 4; // n=12

Bit#(8) x = n; // OK

Bit#(n) y = n * n; // OK

Integer values are the single exception to this rule: Integer values can be assigned

to Bit#(n) variables without explicit conversion. In fact, Integers can be used

anywhere a unsized number literal would work, as shown in the examples.

Bit#(4) x = 1;

let y = x; // Bit#(4)

let z = {x, x}; // Bit#(8)

let w = 2’b11; // Bit#(2)

let n = 42; // Integer

Type inference: Minispec allows omitting a variable’s type by using the let keyword.

The compiler will infer the variable’s type from the expression assigned to the

variable.

4 Expressions

Expressions are a combination of variables, literals, operators, and function calls that are evaluated to produce a value. Expressions

appear in the right-hand side of assignments, as arguments to function calls, and generally anywhere a value is needed.

This section describes the different types of expressions and their syntax, but does not detail the semantics of most expression

types. For example, the operators subsection below explains the syntax and precedence of operators, but does not detail what each

one does. This is because these semantics are type-specific, so they are better explained later (e.g., in Section 6 for operators).
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Simple and complex expressions: Expressions may be as simple as a single variable or literal, may involve a single operator or

function call (e.g., a && b or foo(x)), or may consist of multiple nested subexpressions (e.g., foo(a && b) || c).

Parentheses, precedence, and associativity: Complex expressions with multiple operators can use parentheses to explicitly

specify the evaluation order of the multiple operations (e.g., (a + b) * c or a + (b * c)).

When parentheses are not used, evaluation order is determined using the precedence and associativity rules of the different

operators. Each operator has a precedence, and higher-precedence operators are evaluated first. For example, a + b * c is

equivalent to a + (b * c) because * has higher precedence than +.

Among operators with the same precedence, associativity determines evaluation order. Almost all operators are left-associative,

so the expression is evaluated left-to-right. For example, x << 4 << 2 is equivalent to (x << 4) << 2 (i.e., x << 6), and

not x << (4 << 2) (which would be x << 16). The only right-associative operator is the ternary operator (Section 4.2).

Though these rules match those of most programming languages and should feel natural, we recommend using parentheses when

the evaluation order is not immediately obvious.

No side effects: Expressions in Minispec never have side effects, i.e., evaluating an expression never modifies any variable or

register. This means that independent subexpressions in a complex expression can be evaluated in any order (or in parallel). For

example, in foo(a && b) || foo(b), both calls to foo can be evaluated in any order (function calls have no side effects).

4.1 Unary and binary operators

The tables below and to the right detail Minispec’s

unary and binary operators, respectively. Unary op-

erators always have higher precedence than binary

operators (so, for example, !a && b is equivalent to

(!a) && b). Binary operators are shown in descending

precedence order. Operators in the same row have the

same precedence. All binary operators are left-associative.

Unary operators

Type Operators Names

Boolean ! Boolean NOT

Logical ~ Bitwise invert

Arithmetic +, - Unary plus, negation

Reduction &, |, ^ AND/OR/XOR bit reduction

Binary operators in precedence order

Type Operators Names

Arithmetic

** Exponentiation

*, /, % Multiplication, division, modulus

+, - Addition, subtraction

<<, >> Left shift, right shift

Relational <, >,<=, >= Less/greater-than/or-equal

Equality ==, != Equality, inequality

Logical

& Bitwise AND

^ Bitwise XOR

^~, ~^ Bitwise XNOR

| Bitwise OR

Boolean
&& Boolean AND

|| Boolean OR

Most operators admit operands of particular types. Specifically:

• Boolean operators apply only to values of type Bool.

• Arithmetic, relational, bitwise logical, and bit reduction operators apply only to values of types Bit#(n) or Integer.

• Equality operators apply to values of any type, including user-defined types.

4.2 Conditional expressions

Conditional expressions allow selecting between two or more values depending on another value.

Conditional operator: The conditional or ternary operator selects between two values based on a Boolean value. Its syntax is:

condExpr? trueExpr : falseExpr

where condExpr is a Bool expression, and trueExpr and falseExpr are expressions of the same type. If condExpr is True,

the expression evaluates to trueExpr; otherwise, it evaluates to falseExpr.

The conditional operator is right-associative (in fact, it is the only right-associative operator). Therefore, a? x : b? y : z is

equivalent to a? x : (b? y : z), and not (a? x : b)? y : z.
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The conditional operator has the lowest precedence of all other operators. Therefore, a? x : y + z is equivalent to

a? x : (y + z), and not (a? x : y) + z.

Bit#(2) v = 2’b10;

Bool isOdd = case (v)

2’b01 : True;

2’b11 : True;

default : False;

endcase;

// Can omit default if we

// list all possibilities

Bit#(2) plusOne = case (v)

0 : 1;

1 : 2;

2 : 3;

3 : 0;

endcase;

Case expression: The case expression allows selecting among multiple values

depending on a value. Its syntax is:

case (compExpr)

value1 : expr1;

value2 : expr2;

...

[ default : defaultExpr; ]
endcase

where compExpr, expri, and defaultExpr are expressions, and valuei are

different values of the same type as compExpr. If compExpr’s value matches one

of the values valuei, the case expression evaluates to its corresponding expression

expri. Otherwise, the case expression evaluates to defaultExpr.

The case expression must match against something—it must always evaluate to a

value. Therefore, the default item is optional only when the case expression enu-

merates all possible values of compExpr. A case expression that does not enumerate

all possible values and does not have a default item will produce a compiler error.

4.3 Selection and concatenation expressions

Selection expressions use brackets ([]) to select a bit or range of bits from a Bit#(n) value, or an element from a Vector#(n,T).

Their syntax is expr[ startExpr[:endExpr] ]. Section 6.2 describes the semantics of selection expressions for Bit#(n),

and Section 6.4 describes the semantics for Vector#(n,T).

Concatenation expressions use curly braces ({}) to concatenate multiple Bit#(n) values into a wider value. Their syntax is

{expr1, ..., exprN}. Section 6.2 describes their semantics.

4.4 Struct creation expressions

The struct creation expression creates a struct value. Its syntax is StructType{member1:expr1, ..., memberN:exprN}.

Section 7.2 describes structs and the semantics of struct creation.

4.5 Function and method calls

Functions are described in Section 8. The function call expression allows invoking a function. Its syntax is:

funcName[#(param1, ..., paramK)][(argExpr1, ..., argExprN)]

where funcName is the name of the function, parami are the function’s parameters, and argExpri are the function’s arguments.

Parameters must be specified if the function is parametric (see Section 10 for details and examples on parametric functions), and

can’t be specified otherwise. Arguments are optional because it’s possible to have functions without arguments.

Methods allow modules to return values, and are described in Section 9. The method call expression has the following syntax:

submoduleName.methodName[(argExpr1, ..., argExprN)]

where submoduleName is the name of the submodule instance that implements the method, methodName is the name of the

method, and argExpri are the method’s arguments. Methods cannot be parametric.

5 Statements

Statements, such as variable declarations or assignments, are the basic syntax unit of Minispec logic. For example, each function

(Section 8) consists of a sequence of statements separated by semicolons. Each statement expresses an action to be carried out.

Whereas expressions always evaluate to a value and never have side effects, statements never evaluate to a value and often have

side effects. Semantically, statements appear to be evaluated in sequence, which makes code easy to understand. However,

sequences of statements are synthesized into parallel combinational logic. Section 8.1 explains how this synthesis is done.
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5.1 Variable statements // Variable declarations

// Without initialization

Bit#(1) a;

// With initialization

Bit#(2) b = 2’b11;

// Using let

let c = 3’b011; // Bit#(3)

// Multiple variables

Bool d = True, e = False;

// Assignments

a = 1’b1;

b[1] = 1’b0;

c[2:1] = b + 1;

typedef struct {

Bool m; Bit#(2) n;

} ExStruct;

ExStruct s;

s.n[1] = 0;

// Lexical scoping

if (d) begin

let x = !e;

$display(x); // in scope

end

$display(x);

// Error, x out of scope

// Shadowing

if (d) begin

let d = !e; // shadows

$display(d);

end

$display(d); // OK, uses

// outer d

Variables are names for intermediate values.

Variable declaration and initialization: The basic variable declaration statement

has the form:

VarType varName;

where VarType is the variable’s type and varName is its name. Variables declared

this way are uninitialized, and cannot be used until they are assigned a value.

Variables can be declared and initialized in the same statement:

VarType varName = initExpr;

where, initExpr is an expression compatible with type VarType.

When declaring and initializing a variable, the let keyword can be used in place of

VarType:

let varName = initExpr;

In this case, the compiler will infer the variable’s type from initExpr’s type.

Finally, multiple variables of the same type can be declared and optionally initialized

in the same statement:

VarType varName1 = initExpr1, ..., varNameN = initExprN;

Variable assignment: Each assignment statement binds a variable to a value. Its

syntax is lValue = expr;, where lValue can be (i) variable name, (ii) a struct

member or submodule input (e.g., structVarName.memberName), (iii) a single bit

or vector element (e.g., varName[bitNum]), (iv) a range of a bits from a Bit#(n)

variable (e.g., varName[hi:lo]), or (v) a nested combination of any of the above.

A variable can be assigned to multiple times. Each assignment changes the value

bound to the variable. Every statement following the assignment sees the new value.

Variables of compound types (i.e., structs, vectors, and Bit#(n)) can be declared

uninitialized and then initialized element by element. However, it is illegal to use a

Bit#(n) variable that is partially initialized, even if the particular bits being accessed

have been initialized. To avoid this problem, you can initialize the entire Bit#(n)

variable (e.g., to 0 or ?), then reassign the individual bits. Structs and vectors do not suffer from this limitation.

Variables are lexically scoped: Like most languages, Minispec uses lexical scoping: a variable may only be used inside the

block of code it is defined. For example, a variable declared within a begin-end block cannot be used outside the block.

Name clashes and variable shadowing: It is illegal to declare two or more variables with the same name in the same scope (i.e.,

block of code). Scopes can be nested, and it is allowed, though not recommended, to declare a variable in a nested scope with the

same name as another variable in a surrounding scope. In this case, we say the variable in the inner scope shadows (i.e., hides)

the variable in the outer scope. Shadowing can be confusing and error-prone, so the compiler emits warnings on every shadowed

variable.

5.2 Begin-end statements

A begin-end statement denotes a block of code. It allows combining multiple statements into a single statement. Begin-end

blocks can be used anywhere a statement is required, and are often used with control-flow statements if and for. Its syntax is:

begin stmt1 ... stmtN end

where stmti are statements. Each begin-end block initiates a new lexical context, which supports local variable declarations.
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Note that begin-end statements are not terminated by semicolons, and placing a ; after the end keyword will cause an error. This

follows BSV and SystemVerilog/Verilog syntax. In general, keywords that start with end (e.g., end, endfunction, endcase,

etc.) are not followed by ;, while all other statements are terminated by ;.

5.3 Control-flow statements
Bit#(2) a = 2’d2;

Bool b = True;

// If statements

Bit#(4) x = 0;

if (a > 2) x = {0, a};

Bit#(4) y;

if (b) y = x;

else y = ~x;

Bit#(4) z;

if (a > 2) z = x;

else if (b) z = y;

else begin

let w = foo(y);

z = w + 1;

end

// Case statement

case (z)

1 : x = 1;

2 : begin

x = 2;

z = y + 1;

end

default : x = 0;

endcase

// For loop

Bit#(6) w;

for (Integer i=0; i<6; i=i+1)

w[i] = x[i % 2];

Minispec supports conditional statements and (restricted) loops. Though similar

in syntax to those of other programming languages, these constructs synthesize to

combinational logic. Here we explain the syntax and semantics of each statement,

and Section 8.1 explains their synthesis to hardware.

If statements have the following syntax:

if (condExpr) trueStmt [ else falseStmt ]

where condExpr is a Bool expression, and trueStmt and falseStmt are state-

ments. If condExpr evaluates to True, then trueStmt is executed. Otherwise, if

the optional else clause is present, falseStmt is executed.

As shown in the examples, if statements often use begin-end blocks, and multiple

if-else statements can be chained (if (cond1) ... else if (cond2) ...).

Case statements have a similar syntax to case expressions (Section 4.2):

case (compExpr)

value1 : stmt1;

value2 : stmt2;

...

[ default : defaultStmt; ]
endcase

A case statement tests compExpr against the valuei values, and on a match with

valuei, stmti is executed. If there are no matches and the optional default label is

specified, defaultStmt is executed. Unlike case expressions, case statements need

not enumerate all values or specify a default statement. If there are no matches and

no default, none of the statements is executed.

For loop statements allow compactly expressing a sequence of similar statements.

They have the usual syntax:

for (Integer iVar = initExpr; testExpr; iVar = updExpr) stmt;

where iVar is the name of the Integer induction variable; initExpr is the induction variable’s initial value; testExpr is a

Bool expression that denotes whether to stop iterations; updExpr is evaluated after each iteration to update iVar; and stmt is

the statement executed on each iteration.

For loops are not like general loops in programming languages. Whereas general loops may iterate on values unknown at compile

time and may have an unknown number of iterations, Minispec for loops have a known iteration count and are unrolled at

compile time. This makes for loops implementable with combinational logic. To guarantee that the iteration count is known, the

induction variable is always an Integer. For example, the loop in the example to the right is unrolled into:

w[0] = z[0]; w[1] = z[1]; w[2] = z[0]; w[3] = z[1]; w[4] = z[0]; w[5] = z[1];

Return statements are used to return a value from a function or method. Their syntax is simply return expr;. Section 8

explains where they can appear and provides examples.

5.4 Register-write statements

A register-write statement performs a write to a register module. Its syntax is regName <= expr;. Registers are the basic

building block of modules and sequential logic, so Section 9 details the semantics and restrictions of register writes.
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6 Built-In Types

This section describes the five basic built-in types that Minispec provides. It details the semantics of the operators each type

supports and describes the built-in functions provided to work with these types.

6.1 Bool
Bool a = True;

Bool b = False;

Bool x = !a; // False

Bool y = a && b; // False

Bool z = a || b; // True

Bool e = a == b; // False

Bool n = a != b; // True

Variables of type Bool can take one of two values, True or False. Bool values

support the three basic Boolean algebra operations: Boolean NOT (!), Boolean AND

(&&) and Boolean OR (||).

Bool values also support equality operations (==, !=). Note that, for Boolean values,

!= is equivalent to Boolean XOR, and == is equivalent to Boolean XNOR.

6.2 Bit#(n)

Bit#(n) represents an n-bit value. The parameter n must be a non-negative

Integer.
Bit#(4) a = 4’b0011;

Bit#(4) b = 4’b0101;

Bit#(4) x = ~a; // 4’b1100

Bit#(4) y = a & b; // 4’b0001

Bit#(4) z = a ^ b; // 4’b0110

Bit#(4) s = a + b; // 4’b1000

Bool geq = a >= b; // False

Bit#(1) any1 = |a; // 1’b1

Bit#(1) ev1s = ^a; // 1’b0

Bitwise logical operations: Bit#(n) supports bitwise inversion/NOT (~), AND (&),

OR (|), XOR (^), and XNOR(~^ or ^~). Bitwise logical operations take Bit#(n)

inputs and produce a Bit#(n) output, where the operations apply to each bit of the

inputs.

Arithmetic and relational operations: Bit#(n) supports all arithmetic and rela-

tional operators. These operations treat Bit#(n) values as unsigned integers.

Bit reduction operations: Bit#(n) supports AND (&), OR (|), and XOR (^)

reductions. Bit reductions are unary operations that take a Bit#(n) input and

return a Bit#(1) output that results from reducing the bits of the input using

the specified operation. For example, given Bit#(4) a, &a is equivalent to

a[3] & a[2] & a[1] & a[0].

Converting to and from Bit#(n): All types except Integer are ultimately represented as a collection of bits in hardware, and

can be converted to and from Bit#(n). The built-in function pack converts to Bit#(n), and unpack converts from Bit#(n),

as shown below.

typedef enum Color {Red, Green, Blue};

Color c = Red;

Bit#(2) x = pack(c); // 2’b00, the binary representation of Red

Color g = unpack(x + 1); // Green, whose binary representation is 2’b01

Color u = unpack(x + 3); // unspecified value, as no Color corresponds to 2’b11

Bit selection: Given a Bit#(n) variable x, x[i] selects the ith bit of x. x[i] has type Bit#(1).

Bits are enumerated right-to-left, i.e., starting from the least-significant bit. For example, given Bit#(4) x = 4’b1010, then

x[0] = 0 (the least-significant or rightmost bit), x[1] = 1, x[2] = 0, and x[3] = 1 (the most-significant or leftmost bit).

This is consistent with how digits are always enumerated in a number (according to significance, so the value is
∑

n−1

i=0
2ix[i]),

but it is different from how vectors are indexed.

The selector i in x[i] can be a literal, an Integer, or a Bit#(k) variable. In the first two cases the bit selected is constant,

which results in an efficient hardware implementation (as no logic gates are required, only wires). In the last case the bit selected

is variable, and will require more hardware to implement.

Given a Bit#(n) variable x, x[i:j], with i ≥ j, selects the range of bits of x starting at x[i] and ending at x[j], both

inclusive. When the difference between i and j is known at compile time, x[i:j] has type Bit#(i-j+1). Otherwise, the

bit-width of the selected slice is unknown at compile time, and on a size mismatch with the destination variable, the slice will be

padded with zeros if the destination is wider, and the slice will be truncated from the left if the destination is narrower.
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Bit#(2) a = 2’b11;

Bit#(4) b = 4’b1001;

Bit#(3) c = 3’b010;

Bit#(9) x =

{a, b, c}; // 9’b111001010

let y = {a, c}; // 5’b11010

let z = {1’b1, a}; // 3’b111

Bit concatenation: Given two or more Bit#() values x1, ..., xk, {x1, ..., xk}

concatenates these values. The result has type Bit#(s), where s is the sum of the

bit-widths of all concatenated elements.

Bit concatenation can take at most one unsized number literal, and will infer the

width of that literal to match the widths of the concatenated value and the required

type, as shown in the examples below.

Bit#(2) a = 2’b11;

Bit#(8) i = {a, 0}; // 8’b1100_0000, as 0 is inferred to be 6 bits

Bit#(8) j = {2’b11, 0, 1’b1}; // 8’b1100_0001, as 0 is inferred to be 5 bits

Bit#(8) k = {~0, ~a, a}; // 8’b1111_0011, as 0 is inferred to be 4 bits

Bit#(8) k = {0, 10}; // Error, can’t deduce the sizes of two unsized literals

Bit#(4) a = 4’b1001;

Bit#(2) x = truncate(a);

// 2’b01

Bit#(6) y = zeroExtend(a);

// 6’b001001

Bit#(6) z = signExtend(a);

// 6’b111001

Bit#(6) w = signExtend(x);

// 6’b000001

Truncation and extension: The built-in function truncate truncates the most-

significant bits of its argument to match the bit-width of a narrower destination.

zeroExtend adds zeros to the left of the argument to match the bit-width of a

wider destination. Finally, signExtend extends the argument by replicating its most

significant bit to match the bit-width of a wider destination.

6.3 Integer

Integer represents an integer value (i.e., a negative or non-negative number) with an

unbounded number of bits. Integer supports the same unary and binary operators

as Bit#(n). However, since Integer is signed, arithmetic and relational operators

have signed semantics.

Integer is the only type in Minispec that is not synthesizable to hardware, and it is used exclusively at compile time: all

Integer expressions must be evaluable by the compiler. Section 10 explains precisely how Integer values are evaluated at

compile time.

6.4 Vector#(n,T)
Vector#(4, Bool) lessThanTwo;

for (Integer i=0; i<4; i=i+1)

lessThanTwo[i] = i < 2;

// Static selection

Bool a = lessThanTwo[3];

Integer i = 1;

Bool b = lessThanTwo[i+1];

// Error, out-of-bounds

Bool c = lessThanTwo[i+3];

// Dynamic selection

Bit#(3) j = 3’d1;

Bool d = lessThanTwo[j];

// Undefined, out-of-bounds

Bool e = lessThanTwo[j+3];

// Vector of submodules

module Example;

// Vector of 4 8-bit regs,

// all initialized to 0

Vector#(4, Reg#(Bit#(8)))

regVector(4’d0);

[...]

endmodule

Vector#(n, T) represents a vector or array of n elements of type T.

Element selection: Given a Vector#(n,T) variable v, v[i] selects the ith element

of v. v[i] has type T.

The selector i in v[i] can be a literal, an Integer, or a Bit#(k) variable. As in

bit selection (Section 6.2), only the last of the three cases results in dynamic selection,

which requires more hardware.

Static and dynamic element selection have different guarantees with respect to out-of-

bounds accesses. Static selectors are always checked by the compiler, so the compiler

will flag any v[i] with i >= n as an out-of-bounds error. Dynamic selectors are

not checked, so v[i] with i >= n will return an unspecified element.

Initialization: Vector variables need not be initialized when declared, and can be

initialized element-by-element.

Modules (Section 9) can instantiate Vectors of submodules. In this case, the vec-

tor is initialized with the same syntax as submodule instantiation (Section 9.1):

Vector#(n,T) vectorName(submoduleArg1, ..., submoduleArgK);. Sub-

module arguments are passed to all submodules.

Other vector functions: Vector#(n,T) is a BSV type. Appendix C.3 of the BSV

reference describes several functions for working with vectors, which can also be

used in Minispec code.
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6.5 Maybe#(T)
// Creating Maybe#(T)’s

Maybe#(Bit#(1)) a = Valid(1);

Maybe#(Bit#(4)) b = Invalid;

// Validity checking

Bool aValid = isValid(a);

// Unpacking Maybe#(T)’s

let x = fromMaybe(0, a); // 1

let y = fromMaybe(4, b); // 4

// Common unpacking idiom:

// the if condition checks

// validity, so fromMaybe’s

// arg is always valid and

// defaultValue is irrelevant

if (isValid(a)) begin

let aVal = fromMaybe(?, a);

[...]

end

Maybe#(T) represents an optional value of type T. A Maybe#(T) can be either

Valid if it holds a value of type T, or Invalid if it does not hold a value. Maybe#(T)

is especially useful for modules (Section 9), which often do not have valid inputs or

outputs every cycle.

Creating Maybe#(T) values: Given a value v of type T, Valid(v) is a valid

Maybe#(T) that holds v. The literal Invalid can be assigned to any Maybe#(T)

variable to make it invalid.

Checking for validity: The built-in function isValid returns True if its argument

is Valid, and False if it is Invalid.

Unpacking Maybe#(T)’s optional value: The built-in function fromMaybe

allows extracting the value of a valid Maybe value. Its signature is

T fromMaybe(T defaultValue, Maybe#(T) x). If x is Valid, fromMaybe

returns x’s value; if x is Invalid, fromMaybe returns defaultValue.

7 User-Defined Types

7.1 Type synonyms

typedef Bit#(8) Byte;

Byte x = 8’d1;
Type synonyms allow giving a different name to an existing type. Their syntax is:

typedef Type NewType;

where Type is any existing type, and NewType is the new type’s name. Type synonyms are a convenience feature. The original

type and its synonym can be used interchangeably, e.g., without any type conversions on assignments.

Type synonyms can be parametric; see Section 10 for details.

7.2 Structs

// Definition

typedef struct {

Byte red;

Byte green;

Byte blue;

} Pixel;

// Creation

Pixel cyan = Pixel{

red : 0,

green : 255,

blue : 255

};

// Member access

Bit#(10) intensity =

zeroExtend(cyan.red) +

zeroExtend(cyan.green) +

zeroExtend(cyan.blue);

// Assignment

Pixel white = cyan;

white.red = 255;

Structs are composite types (also known as product types): they represent a group

of members of different types.

Definition: Struct definitions use the following syntax:

typedef struct {

Type1 member1;

Type2 member2;

...

TypeN memberN;

} StructType;

where StructType is the (new) type for the struct, memberi are the (lowercase)

names of its members, and Typei are the (uppercase) types of its members.

Structs can be parametric; see Section 10 for details.

Creation: The struct creation expression (Section 4.4) allows constructing a struct

value. Its syntax is:

StructType { member1 : expr1, ..., memberN : exprN }

where StructType is the struct’s type name, memberi are the struct members’

names, and expri denote the values that the members should take.

Member access: Given value s of a struct type that has a member with name m, the

expression s.m yields the value of member m. If s is a variable, then values can be

assigned to its individual members as shown in the example.
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7.3 Enums // Enum definition

typedef enum {

Ready, Busy, Error

} State;

// Usage example; assume

// that mod is a module

State s = mod.getState();

if (state == Ready)

// Feed mod an input

else if (state == Error)

// Halt system

// Enum def with label values

typedef enum {

Red = 0, Blue = 2, Green = 1

} PixelChannel;

Enums or enumerations represent a set of unique symbolic constants, called labels.

Enums can be defined using the following basic syntax:

typedef enum { Label1, ..., LabelN } EnumType;

where EnumType is the enum’s type name, and Labeli are the names of the labels.

Labels must be uppercase, and can be repeated across enum definitions. A value of

type EnumType can take one of these labels.

The compiler internally represents an enum with N possible labels as a ⌈log2N⌉-bit

value. With the syntax above, Labeli will take numeric value i-1 (i.e., labels take

consecutive values starting from 0). It is possible to assign the numeric value of each

label explicitly using the following syntax:

typedef enum { Label1 = val1, ..., LabelN = valN } EnumType;

where vali are the distinct numeric values of the labels.

8 Functions and Combinational Logic

Functions implement combinational logic (also known as Boolean logic). Each function takes one or more input arguments and

produces an output result that depends only on the values of the arguments, and does not depend on any other state.

function Bool and2(Bool a,

Bool b);

return a && b;

endfunction

function Bool and4(Bool a,

Bool b,

Bool c,

Bool d);

Bool ab = and2(a, b);

Bool cd = and2(c, d);

return and2(ab, cd);

endfunction

// Functions can have

// multiple return statements

function Bool maj(Bit#(3) x);

Bit#(2) sum = {0, x[0]} +

{0, x[1]} +

{0, x[2]};

if (sum >= 2) return True;

else return False;

endfunction

// Shorthand syntax

function Bit#(1) p(Bit#(3) x)

= x[0] ^ x[1] ^ x[2];

Definition: Functions can be defined using the following syntax:

function RetType fname(Type1 arg1, ..., TypeN argN);

stmt1

...

stmtN

endfunction

where fname is the function’s name; RetType is the type of its return value; argi
are the names of its input arguments, with types Typei; and stmti are statements.

Functions must return a result by using return statements. As shown in the examples,

simple functions without any conditional statements should end with a single return

statement. Functions can use multiple return statements, e.g., in different branches

of conditional (if/else or case) statements. A function that does not always return a

value will produce a compiler error.

Functions can return only one value. To emulate returning multiple values, the

function can return a struct (Section 7.2) instead. A function may have no arguments.

Functions can be parametric; see Section 10 for details.

Definition by assignment: Short functions consisting of a single expression can be

defined more succinctly using the following syntax:

function RetType fname(Type1 arg1, ..., TypeN argN) = expr;

where expr is an expression of type RetType that computes the return value, and

all other elements are as above.

Restrictions: Functions must obey two restrictions to be synthesizable to hardware:

1. No Integer arguments or an Integer result (Integers may only be parameters,

see Section 10).

2. No recursion (parametric functions can perform recursion on Integer parameters

because all such recursive calls are unfolded at compile time, see Section 10).
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8.1 Combinational logic synthesis

Functions are always synthesizable into combinational circuits, i.e., circuits with digital inputs and outputs, where each output is

a Boolean function of the inputs, and where each output is guaranteed to reach a stable digital value after a bounded propagation

delay from the time at which the inputs reach valid digital values. Combinational circuits are a basic building block of digital

logic. Here, we discuss why Minispec functions are always synthesizable into combinational circuits, and sketch how this

synthesis is done in practice.

Function properties: Minispec functions have three properties that differ from functions in other programming languages and

that enable synthesis to combinational logic:

1. Pure: Functions compute the output based only on the values of its input arguments. They cannot use or alter any state or

variables outside of the function (they may use global constants, however). Thus, given a particular set of input arguments, a

function always produces the same output.

2. Acyclic: Functions have no cycles, i.e., they cannot “jump back” to a prior point of execution. They are thus always guaranteed

to terminate. This is because (i) recursion is not allowed, and (ii) for loops have known and fixed iteration counts.

3. Synthesizable arguments and output: Each input and output of a function is always of a type that is representable using a

fixed number of bits.

Why functions are synthesizable: Given the above properties, it is easy to show that all functions can be synthesized to

combinational circuits. Since each input and output takes a fixed number of bits, we can always enumerate all input values,

build a truth table (computing the output for each input), and implement the truth table as a combinational circuit (e.g., as a

sum-of-products). While this is a simple proof, it is not how circuits are actually synthesized, as building a truth table and

deriving an optimized implementation from it takes too much space and time for circuits with more than a few bits of inputs.

How functions are synthesized: In practice, Minispec functions are synthesized by composing smaller building blocks. This

exploits that combinational circuits compose easily: a circuit composed of multiple combinational devices connected with wires

is also combinational if each input of the constituent devices is tied to a single output or a constant value, and if the network is

acyclic, i.e., it has no directed cycles (which may create feedback loops).
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Figure 1: Synthesized functions from the

examples in page 11.

Since Minispec functions are acyclic, one can synthesize a function by synthesizing

each syntax element (expression, statement, etc.) and connecting them. Though the

details of synthesis depend on the compiler and tools used, it is useful to roughly

understand how syntax elements are translated and composed. Specifically:

• Each complex expression is broken down into a tree of basic operations (e.g.,

operators or function calls), then each operation is synthesized, and finally their

inputs and outputs are wired together in the same tree fashion.

• All operators (Section 4) can be implemented using combinational circuits.

Each operator is synthesized as a separate circuit.

• Conditional expressions translate to multiplexers: each ternary operator is a

2-to-1 multiplexer, and each case expression is an N-to-1 multiplexer.

• Concatenation expressions, struct creation expressions, and selection expres-

sions that use statically known indices require wires but no logic: they are just

combining or selecting bits of existing variables. Selection expressions that use dynamic indices require some logic (e.g., a

barrel shifter).

• Functions are inlined: each function call instantiates a separate circuit implementing the function, which is then synthesized.

(since there’s no recursion, inlining always terminates).

• Variable assignments require no logic. Each assignment is simply naming the value (i.e., wires) of a particular expression, so

it can be used somewhere else.

• If statements are translated to multiplexers: all expressions within the if statement are synthesized, then each variable assigned

to within the if statement is followed by a multiplexer to select between the value assigned within the if branch (if the predicate

is true) and the value before the if branch (if the predicate is false). If-else statements are similar: the if and else branches are

both synthesized, and the multiplexer selects between the value in the if branch and the value in the else branch.

• Case statements are similar to if statements, requiring a multiplexer for each value assigned within the statement to select the

right branch.

• For loops are unrolled (Section 5.3): Each iteration is expanded into a separate block, then synthesized as usual.
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• A single return statement at the end of the function simply names the output of the function and requires no logic. In functions

with multiple return statements, the output value is selected using multiplexers similar to if-else statements.

Synthesis with don’t-care values: Don’t-care values (represented by ?, Section 2.7) denote values that are irrelevant. Don’t-care

values can be assigned to variables of any type. The compiler will pick a value for them. This flexibility often lets the compiler

produce better circuits. For example, in the code Bit#(4) x = ?; if (foo(y)) x = bar(z);, the compiler can choose ?

to be bar(z) and eliminate the conditional altogether, optimizing the whole code snippet to Bit#(4) x = bar(z);.

9 Modules and Sequential Logic

Modules implement sequential logic, i.e., digital logic with state. Specifically, they implement single-clock synchronous

sequential circuits, where state is maintained in registers that all share the same periodic clock signal. Registers update their

contents simultaneously, at the rising edge of the clock. This allows discretizing time into cycles and abstracting sequential

circuits as finite state machines (FSMs). As shown in Figure 2, on each cycle, the FSM stores a particular state (in registers) and

takes some inputs. Combinational logic within the FSM uses the state and inputs to compute the next state of the FSM and its

outputs for the current cycle. At the end of the cycle (i.e., in the next rising clock edge), register update their values, placing the

FSM into the next state.

Minispec modules have four key elements that correspond to the components of FSMs:

1. Submodules, which can be registers or other user-defined modules to allow composition of modules.

2. Methods, which implement combinational logic to produce outputs given some input arguments and the current state.

3. Rules, which implement combinational logic to produce the next state given some external inputs and the current state.

4. Inputs, which represent external signals controlled by the enclosing module.
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Figure 4: General module.

Figure 3 shows the structure of a basic module with registers but no other submodules. Comparing Figure 2 and Figure 3, the key

difference is the distinction between inputs and method arguments: whereas combinational logic in FSMs can use any input to

produce both the next state and the output, module methods use arguments to produce outputs, separate from the inputs used

by rules. This separation makes hierarchical composition easy (Section 9.3). Figure 4 shows a general module that includes

Submodule s

inputs
Combinational

logic

outputs

clock

Reg

in

out
Comb.
cycle

Figure 5: Example showing how compos-

ing FSMs by wiring their inputs and out-

puts can cause a combinational cycle.

submodules other than registers. The separation between rule inputs and method ar-

guments allows modules to instantiate and use arbitrary submodules while avoiding

combinational cycles, i.e., ensuring that combinational logic remains acyclic.

To see why rules and methods enable composition while avoiding combinational

cycles, consider a different approach where we composed different FSMs directly as

shown in Figure 5, with the combinational logic in a module setting the inputs and

using the outputs of its submodules (Verilog and other HDLs follow this approach).

Unfortunately, this can cause combinational loops like the one in Figure 5: the outer

module sets s.in = !s.out; and submodule s has a combinational path from

in to out, causing a combinational feedback loop. We cannot prevent loops by

disallowing modules from setting submodule inputs based on submodule outputs,

because this is often necessary. For example, a module may need to check whether

a submodule is ready to start processing a new value (e.g., through a ready output)

before giving it the value through an input.
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Thus, composing FSMs this way requires the specific combination of a module and its submodules to yield acyclic combinational

logic. But this condition is brittle, requiring discipline from the designer, and it is implementation-dependent: changing the

implementation of a submodule may introduce a combinational cycle in a previously correct circuit. It is thus a poor abstraction.

Methods avoid these problems: with methods, input-to-output combinational paths in a module happen only between method

arguments and method outputs. Moreover, method calls force the arguments to be available before the output is available. Thus,

a module cannot perform a sequence of method calls to its submodules that results in a cycle. As a result, modules can safely call

methods from submodules without knowing their implementation details; only their interface matters.

Modules need not follow a strict hierarchy, but a hierarchical design has simpler semantics. Thus, we first focus on modules that

follow a strict hierarchy (Section 9.3). We then describe the general semantics and additional mechanisms for modules that do

not follow a strict hierarchy (Section 9.4).

9.1 Module syntax and elements
// 8-bit counter that can be

// incremented every cycle

module Counter8;

Reg#(Bit#(8)) count(0);

method Bit#(8) getCount;

return count;

endmethod

input Bool increment

default = False;

rule tick;

if (increment)

count <= count + 1;

endrule

endmodule

// 16-bit counter built from

// two Counter8 submodules

module Counter16;

Counter8 lo(0);

Counter8 hi(0);

method Bit#(16) getCount =

{hi.getCount,lo.getCount};

input Bool increment

default = False;

rule tick;

if (increment) begin

lo.increment = True;

// Increment hi when lo

// is about to overflow

hi.increment =

(lo.getCount == 255);

end

endrule

endmodule

Modules are defined using the following syntax:

module ModType [(Type1 arg1, ..., TypeN argN)];
<submodule, method, input, rule, constant decls>

endmodule

Each definition specifies a new module type, ModType, which can then be instantiated

as a submodule in other modules or as the top-level module. Modules meant to be

submodules can have optional module arguments, argi, with types Typei. These

arguments can be constant values (e.g., used to set initial values), or other modules.

The body of the module can declare submodules, methods, inputs, rules, and constants,

whose syntax is explained below and shown in the examples to the right.

Modules can be parametric; see Section 10 for details.

Submodule declarations use the syntax:

SubmodType submodName [(arg1, ..., argN)];

where SubmodType is the type of the submodule being instantiated, submodName is

the name of this specific submodule instance, and argi are the (optional) arguments

to the module.

Methods are nearly identical to functions: they specify combinational logic that

produces an output and have no side effects. They can call methods in submodules

or read register values, but they cannot set the inputs of submodules or write to any

register (these are side effects, which only rules can have). Methods use a syntax

nearly identical to functions:

method RetType mname(Type1 arg1, ..., TypeN argN);

stmt1

...

stmtN

endmethod

where mname is the method’s name; RetType is the type of its return value; argi
are the names of its arguments, with types Typei; and stmti are statements.

Methods also support the same shorthand syntax as functions:

method RetType mname(Type1 arg1, ..., TypeN argN) = expr;

Use: A method may be called from the methods or rules of its enclosing module. The

syntax for a method call is submoduleName.methodName(arg1, ..., argN)

(Section 4.5).

Inputs specify external inputs that are controlled by the rule of an enclosing module. Their syntax is:
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input Type name [default = defaultExpr];

where Type is the input’s name, name is its name, and the optional defaultExpr specifies a default value for the input.

Use: Inputs can be read within the module just like variables, but cannot be set.

Inputs can be set within a rule of the enclosing module, with syntax submoduleName.inputName = expr;, like a normal

assignment. If the input does not have a default value, the enclosing module must set the input every cycle. If the input has a

default value, then setting the input is optional.

An input can only be set once. Trying to assign to the input multiple times within a cycle will cause a compiler error.

Rules specify combinational logic that updates the state of the module, i.e., they implement side-effects. Specifically, rules set

the values to be written in registers at the end of the cycle and the inputs of submodules. Rules use the following syntax:

rule ruleName;

stmt1

...

stmtN

endrule

Rules fire (i.e., automatically execute) every cycle. A module may have multiple rules, but these rules cannot have overlapping

side-effects (i.e., they must update disjoint registers and inputs). Any such overlap will cause a compiler error.

9.2 Registers

Registers are the most basic module. Reg#(T) stores a value of type T. T can be any type that can be represented as bits.

Declaration: Modules can declare registers with the usual syntax for submodules. Reg#(T) takes an initial value, so its

declaration is Reg#(T) regName(initialValue);.

Initial values allow registers to start set to known values. This requires some additional circuitry (Section 9.5). If it’s not

necessary to have an initial value, this circuitry can be avoided by using RegU#(T), a variant of Reg#(T) that starts on an

unknown value. RegU#(T) declarations do not take an initial value: RegU#(T) regName;

Reads: Registers can be read from anywhere in the module. Simply using the name of the register yields its value.

Writes: Registers can be written from rules using the following syntax:

regName <= expr;

where regName is the register’s name and expr is the value to be be written to it. Note how register writes are not normal

assignments: they use <= instead of = and have different semantics.

Register writes do not take place until the end of the cycle. Reading a register value in the same rule and after a register write

statement will yield the value of the register in the current cycle, not the value set by the register write.

Registers can be written only once. In each cycle, a register may be written at most once. A rule that writes the same register

multiple times will cause a compiler error. Two rules that may write to the same register will cause a compiler error. Registers

need not be written every cycle; if not written, a register retains its previous value.

9.3 Semantics of hierarchically nested modules

Suppose we impose two conditions on a design. First, modules follow a strict hierarchy, i.e., each module interacts only with the

submodules it defines. Second, no method reads module inputs.

Under these conditions, Minispec guarantees that there are no combinational cycles and gives very simple semantics: the system

behaves as if, on each cycle, rules execute sequentially, outside-in: first, the rule in the top-level module fires, then the rules in all

its submodules, and so on.

Because each module’s rule calls methods in its submodules and sets the inputs to the submodules, this order guarantees that all

inputs are set by the time a rule executes. Moreover, the effects of rules in submodules cannot be observed by their enclosing

modules: data flows inside-out only through methods, and data flows outside-in through inputs and rules.
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9.4 General semantics of modules (advanced)

// Example: non-hierarchical

// module composition

module FIFO;

input Maybe#(Bit#(4))

enqueue default = Invalid;

method Maybe#(Bit#(4))

first = ...;

method Bool isFull = ...;

...

endmodule

module Prod(FIFO outQ);

...

rule produce;

if (!outQ.isFull)

outQ.enqueue = Valid(v);

endrule

endmodule

module Cons(FIFO inQ);

...

rule consume;

let f = inQ.first;

if (isValid(f)) ...

endrule

endmodule

module TopLevel;

FIFO queue;

Prod producer(queue);

Cons consumer(queue);

...

endmodule

Though the above semantics are simple, there are some cases for which strict hier-

archical nesting can be too restrictive. For example, suppose we want to connect

two modules through a FIFO (First-In-First-Out) queue: the producer module en-

queues values into the queue, and the consumer module dequeues them. If we

followed the hierarchical approach, the top-level module could instantiate three sub-

modules: producer, consumer, and queue. Then, the rule in the top-level module

could explicitly marshall outputs from producer into queue and from queue to

consumer. But this can get cumbersome. Instead, we may want to have producer

and consumer both directly interact with queue, as shown in the code to the right.

But now queue’s methods and inputs are being used by two different modules, rather

than by only its enclosing module. Moreover, there may be non-trivial interactions

between them. For example, if the producer has a value ready but the queue is empty,

we might want to let the consumer dequeue that value on the same cycle.

General semantics: In general, rules in arbitrary modules can communicate in a

single cycle, as long as doing so does not introduce a combinational cycle. The

compiler will find a fixed order for the rules, and will emit an error on any cycle.

For instance, in our producer-consumer example, the FIFO queue module could

have an enqueue input and a first method that returns that input if the queue has

no buffered values. Because consumer calls first, first reads enqueue, and

producer sets enqueue, producer’s rule is ordered before consumer’s. If there

was another constraint in the system that required the reverse order (e.g., a queue

going in the reverse direction), that would signal a combinational cycle, which would

cause a compiler error.

Wires: In general, it may be desirable to split computation across rules and methods

within the same module to avoid combinational cycles and code repetition, or to

enforce a particular order. Wires are modules that allow rules and methods to

communicate in the same cycle. They come in two flavors:

• BypassWire#(T) implements a wire that must be written on every cycle. It

cannot be read until a rule writes to it.

• DWire#(T) implements a wire with a default value. If the wire is not written in a

given cycle, reads to the wire return the default value. The wire has no memory: it

“reverts” to the default value every cycle.

Wires have the same interface as registers: using the name of the wire yields its value, assignments with <= write to it, only rules

may write to wires, and multiple writes are not allowed.

Wires introduce order constraints among rules and methods: the rule that writes to the wire is ordered before all rules and

methods that read the wire.

9.5 Sequential logic synthesis

Sequential synthesis is a straightforward extension of combinational synthesis (Section 8.1).

Each sequential circuit has inputs and outputs as shown in Figure 4. Two of these inputs are implicit and not present in Minispec

code: CLK, the clock signal, and RST, the reset signal.

newVal

enable

initVal

DFF

D Q val

RST CLK

0

1
0

1

Figure 6: Example synthesized register

with reset and enable circuits.

Registers are synthesized as collections of 1-bit D flip-flops (DFFs). All registers

use CLK as their clock. Registers with an initial value (i.e., Reg#(T)) include reset

circuitry that sets its value to the initial value when the circuit powers up. Because

flip-flops hold an arbitrary value when first powered, this is accomplished by the

RST signal: the RST signal is 1 for a few cycles after power-up, letting registers

write their initial values with the reset circuitry shown in Figure 6. Registers with

no initial value (i.e., RegU#(T)) have no reset circuitry.

16



Registers are always written to by a single rule, but may not be updated every cycle. When not updated every cycle, the register

includes write-enable circuitry to optionally retain its old value, as shown in Figure 6.

Inputs without a default value are simply wires. Inputs with a default value translate to a multiplexer that chooses between the

input value, if any is set, and the default value, if none is set.

Rules are synthesized as normal combinational logic. They produce the values for all registers and inputs they set. When rules

conditionally set registers or inputs, they also generate the corresponding enable signals so that, when not set, registers retain

their old value and inputs use their default value.

Methods are synthesized like functions. A method can be called multiple times. If the method has no arguments (i.e., it always

returns the same value on a given cycle), all callers share the same output value. If the method has arguments, each call

instantiates a new copy of the method.

Finally, wires (Section 9.4) are synthesized exactly like inputs.

10 Parametrics and Static Elaboration

Minispec provides parametric types, such as Bit#(n), that take one or more parameters, such as n in this case. These parameters

must be known at compile time, and when specified, yield a concrete type that can be implemented in hardware (such as

Bit#(4), a 4-bit value). Minispec also allows defining parametric functions, modules, structs, and type synonyms.

Parametrics enable writing generic hardware descriptions that are then concretized as needed. For example, we can write a single

parametric function add#(n) that adds two n-bit numbers. Then, users of the function will call it with particular values of n,

instantiating adder circuits of different widths. Without parametrics, each such adder would require writing a separate function.

In programming languages, parametrics (also known as generics, templates, or polymorphic types) primarily improve efficiency

and safety: by specializing code at compile time, parametrics reduce work done at execution time and prevent type errors. In

Minispec, parametrics play a more important role, because combinational logic has limitations that programming languages

do not (it is not Turing-complete). Thus, parametrics and compile-time specialization enable functionality that cannot be

implemented with combinational logic. For example, in a programming language without parametrics (like C), we could always

write a procedure that adds two numbers of arbitrary bit-widths, e.g., by looping over their bits and adding them one by one. But

we cannot implement a single function (combinational circuit) that adds numbers of arbitrary widths.

Parameters can be either Integers or types (including parametric types). // Doubles a Bit#(n) value

function Bit#(n+1) double

#(Integer n)(Bit#(n) x)

= {x, 1’b0};

// n-element FIFO of T’s

module FIFO#(Integer n,

type T);

Vector#(n, RegU#(T)) elems;

Reg#(Bit#(log2(n))) head(0);

Reg#(Bit#(log2(n))) tail(0);

method Maybe#(T) first;

...

endmodule

Parametric definitions follow a consistent syntax. Parameters are specified after the

function name or module/struct/synonym type, enclosed in #(...). Specifically:

• Functions: function RetType fname#(PDef1, ..., PDefN) ...

• Modules: module ModType#(PDef1, ..., PDefN) ...

• Structs: typedef struct { ... } StructType#(PDef1, ..., PDefN);

• Synonyms: typedef Type NewType#(PDef1, ..., PDefN);

and PDefi are the parameter definitions, each of which can be:

• Integer intParam to denote an Integer parameter with name intParam,

which must be lowercase.

• type TypeParam to denote a type parameter with name TypeParam, which

must be uppercase.

• A specific Integer literal or type, which allows writing parametric definitions that

are already specialized to particular parameter values (see discussion on specialization below).

Integer and type parameter names can be used anywhere in the parametric definition, including in the return type of the function.

Parametric definitions can be recursive on parameters. For example, function rca#(n) in Listing 1(a) calls rca#(n-1). This

recursion is unrolled at compile time, so it translates to a chain of function instances.

Parametric definitions can be specialized. The code can specify both a general parametric definition with Integer and type

parameters, and one or more specialized definitions with fixed integers and types. On a match, a specialized definition takes
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// n-bit ripple-carry adder with carry-in

// using a single parametric function

function Bit#(n+1) rca#(Integer n)

(Bit#(n) a, Bit#(n) b, Bit#(1) cin);

if (n == 1) begin

let cout = (a & b) | (a & cin) | (b & cin);

let sum = a ^ b ^ cin;

return {cout, sum};

end else begin

let x = rca#(n-1)(a[n-2:0], b[n-2:0], cin);

let u = rca#(1)(a[n-1], b[n-1], x[n-1]);

return {u, x[n-2:0]};

end

endfunction

// n-bit ripple-carry adder with carry-in

// base case (specialized)

function Bit#(2) rca#(1)

(Bit#(1) a, Bit#(1) b, Bit#(1) cin);

let cout = (a & b) | (a & cin) | (b & cin);

let sum = a ^ b ^ cin;

return {cout, sum};

endfunction

// general case (used when n != 1)

function Bit#(n+1) rca#(Integer n)

(Bit#(n) a, Bit#(n) b, Bit#(1) cin);

let x = rca#(n-1)(a[n-2:0], b[n-2:0], cin);

let u = rca#(1)(a[n-1], b[n-1], x[n-1]);

return {u, x[n-2:0]};

endfunction(a) (b)

Listing 1: Two ripple-carry adder implementations using recursive parametric functions. (a) uses a single function, whereas (b)

splits the base case into a separate specialized parametric function definition.

precedence over the general one. For example, an alternative definition of function rca#(n), shown in Listing 1(b), includes a

specialized definition of rca#(1) as a base case to stop recursion.

Static elaboration: Parametrics require clear guarantees on what computations and simplifications the compiler performs at

compile time. We refer to this process as static elaboration.

Guarantees are important because we may want to use parametrics with expressions. For example, Listing 1(a) calls rca#(n-1),

and we must guarantee that all parameters are computed at compile time.

Minispec guarantees the following static elaboration behavior:

1. All Integer expressions and variables are elaborated, i.e., turned into concrete values at compile time. An Integer

expression or variable that cannot be elaborated causes a compiler error.

2. Bool expressions and variables are elaborated if they depend only on Bool constants and Integer values.

3. All conditional expressions (ternary, case) and statements (if-else, case) whose predicate is an elaborated Bool or Integer

expression are elaborated to include only the branch that they execute, eliminating all others.

4. Parametrics are instantiated and elaborated lazily, as the compiler finds code that uses them.

To show how these rules combine, consider the example in Listing 1(a). Assume that some other code calls rca#(3). This

triggers the instantiation of rca#(Integer n) with n=3. Since n == 1 is elaborated to False, the if branch is eliminated

and all that remains is the else branch. This code calls rca#(2) (by elaborating rca#(n-1)) and rca#(1). The compiler

then instantiates rca#(2) (and leaves rca#(1) pending). rca#(2) is elaborated just like rca#(3): the if-else is turned

into the else branch, which calls rca#(1) twice. Finally, the compiler instantiates rca#(1). n == 1 is elaborated to True,

so the else branch is eliminated and all that remains is the if branch. Since this branch does not call any functions, no more

parametrics are needed and static elaboration terminates.

From the example above, note that recursion stops by relying on elimination of the else branch in rca#(1). If this did not

happen (i.e., if the if’s predicate could not be elaborated), then the else branch would trigger a call to rca#(0) and recursion

would not end. (To avoid infinite recursion, the compiler limits recursion depth and emits an error when exceeded.)

11 Structure of a Minispec Design

A Minispec design consists of one or more Minispec source files. Each source file should be a plain text file with extension .ms.

Each source file can define its own used-defined types (Section 7), functions (Section 8), modules (Section 9), and two other

top-level statements not yet described: constants and imports.

Constants are declared just like variables and must be initialized at declaration. They may be read elsewhere but may not be
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changed. They are not state (i.e., not like a global variable in other languages) and are simply a convenience to avoid hard-coding

constant values throughout the design.

Import statements allow including the definitions from other files in the current one. Their syntax is import file;, where file

is the name of the imported file without the .ms extension. For example, import Example; would import file Example.ms.

file can be uppercase or lowercase. file cannot include a directory: the imported file must be in either the current directory or

the compiler’s search path (Section 13).

Import statements may appear anywhere (they need not be at the top of the file). An import statement is equivalent to including

the contents of the imported file (and transitively, its own imported files) before the current file. A file can be imported multiple

times, e.g., from several files in the same design. Import cycles (e.g., file1.ms with import file2; and file2.ms with

import file1;). are not allowed, and will cause a compiler error.

Finally, Minispec code may also import BSV code through a bsvimport statement, with syntax bsvimport BsvFile;. Due to

BSV conventions, BsvFile must be uppercase. This translates to an import statement in BSV, with its usual semantics.

12 System Functions
// Test harness for Counter8

// module from Section 9

import counter8;

module Counter8Test;

Counter8 c;

Reg#(Bit#(10)) cycle;

rule tick;

c.increment =

(cycle[0] == 1’b1);

$display("cycle ", cycle,

", count ", c.getCount);

if (cycle == -1) $finish;

cycle <= cycle + 1;

endrule

endmodule

System functions are useful for simulation and debugging. They are used to dis-

play information, read and write data, and terminate the simulation. They are not

synthesizable to hardware, and are only used when simulating a module.

All system functions begin with a dollar sign ($). System functions are called like

normal functions. System functions may only be used within module rules, as they

have side effects. Calls to a system function from a function or method will cause

a compiler error.

The two main system functions are $finish and $display.

$finish terminates the simulation. It takes no arguments.

$display prints strings to standard output. It takes a variable number of arguments,

which can be strings or other values.

As shown in the examples below, every value that is not a string will be interpreted as

an n-bit value and printed as a decimal number by default. To print numbers in other bases, $display can use the same syntax

as C’s printf, using format strings with %b for binary, %d for decimal, and %h or %x for hexadecimal values.

$display("Hello world!"); // Prints "Hello world!"

$display("Hello", " ", "world!"); // Prints "Hello world!"

// Printing non-string values

Bit#(8) x = 42;

$display("x in decimal is ", x); // Prints "x in decimal is 42"

// Using printf-style formatting

$display("0b%b == %d == 0h%h", x, x, x); // Prints "0b00101010 == 42 == 0x2a"

Still, displaying complex types like structs as one long number is inconvenient. The fshow function automatically formats

complex types, as shown in the example below. fshow can be used on values of any type.

typedef struct { Bit#(8) red; Bit#(8) green; Bit#(8) blue; } Pixel;

Pixel cyan = Pixel{ red : 0, green : 255, blue : 255 };

$display(cyan); // Prints " 65535"

$display(fshow(cyan)); // Prints "Pixel { red: ’h00, green: ’hff, blue: ’hff }"

$display terminates every printed string with a newline. If you do not want this behavior, use $write, which uses the same

syntax as $display.

Other system functions: Minispec can use other system functions from BSV, e.g., to read standard input or to read and write

data from/to files. BSV system functions are described in Section 12.8 of the BSV reference. They are rarely needed.
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13 Minispec Tools

Minispec includes an easy-to-use toolset to simulate and synthesize circuits. We first describe its command-line interface, than

its Jupyter interface.

13.1 Command-line tools

ms is Minispec’s high-level command-line interface. ms provides four commands:

• ms eval [<file>] <expression> Evaluate expression

• ms sim <file> <module> Simulate module

• ms synth <file> <function/module> <synthArgs> Synthesize function or module into gates

• ms help Print help message

# Evaluate "2 + 3"

ms eval "2 + 3"

# Evaluate add#(4)(2, 3), where

# add is defined in file add.ms

ms eval add.ms "add#(4)(2, 3)"

# Simulate module TestCounter

# in file counter.ms

ms sim counter.ms TestCounter

# Synthesize function add#(4)

ms synth add.ms "add#(4)"

# Synthesize module Counter

ms synth counter.ms Counter

The <file> argument should be a Minispec source file with the target function

or module. The file argument is optional for ms eval, as it is not needed if the

expression does not call any user-defined functions. Arguments should be quoted

as needed to avoid being interpreted by the shell.

For more details, run ms help.

Internally, ms uses two lower-level tools: msc, the Minispec compiler, which

compiles functions or modules into BSV, Verilog, or a simulation executable;

and synth, a synthesis tool for Minispec and Bluespec circuits that leverages

the yosys open-source synthesis suite and the FreePDK45 open-source 45nm

standard cell library to produce optimized gate-level circuit implementations, and

to analyze their delay and area. These tools can be used directly; run msc -h or

synth -h for usage instructions.

13.2 Jupyter interface

Minispec is integrated with Jupyter notebooks. Minispec Jupyter notebooks follow the usual conventions for notebooks in other

languages: Minispec code can be spread across multiple code cells, which the notebook user can execute individually or in

sequence. A code cell can use or redefine functions, modules, types, or constants defined in previously executed cells. Redefined

functions or modules can be used by later code, but previously executed cells still use the old definitions. In a Minispec notebook,

“executing” a code cell only checks the code for errors. To provide additional capabilities, cells can include additional built-in

commands, called magics in Jupyter terminology.

Magics: Minispec notebooks provide four magics: %%eval, %%sim, %%synth, and %%help. Each of these magics has the same

purpose as the ms command with the same name (Section 13.1), and follows a similar syntax.

There are two syntax differences between Jupyter magics and ms commands. First, Jupyter magics do not take a file argument;

instead, they work on the code from executed cells. Second, Jupyter magics do not need quotes on expressions or parametric

functions or modules, as they are not interpreted by the shell.

The Jupyter notebook tutorials on combinational and sequential logic serve as detailed examples on using Jupyter notebooks and

the different magics.
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